
WHITE PAPER

page 1 of 5Netronome Systems, Inc.

INTRODUCTION

The death of Moore’s Law, coupled with increasing data traffic and deployment of process-

ing-intensive workloads such as SDN, security and machine learning, has driven the rapid

growth of the heterogeneous processing market. Application-specific offloads using co-

processors – implemented as a system on a chip (SoC) - deliver significantly better silicon

utilization and overall productivity in servers. Coprocessors offload and accelerate specific

workloads, however, data movement efficiency across the processing cores and memory in

such SoC designs is becoming paramount. As a result, compute architectures in data center

core and edge applications are evolving.

While considering data movement inside a traditional server, the assumption is that all pro-

cessing will be carried out in the general-purpose host processor. In most cases, the host pro-

cessor comprises of x86 CPU cores. Memory and storage accesses needed in the execution

of compute tasks are carried out by the host processor. The networking silicon in the network

interface card (NIC) installed in the server feeds data in and out of the server. All data is meant

to go to a single destination – the host processor. In this environment, on the ingress path,

data enters the server through the NIC port and traverses the PCIe bus into the host mem-

ory where the host processor can perform work on the data. As required by the application

running in the host processor, the data is prepared and sent to the storage device (such as an

SSD) available on the server. This is a very simplified scenario, as shown in Figure 1, but serves

the purpose of this example. On the egress path, processed data is fed back out by the host

CPU over the PCIe bus and back to the NIC, which then sends the data out to the network.

Efficient Data Movement in Modern SoC
Designs – Why It Matters

CONTENTS

INTRODUCTION..1

EXAMPLE: NETWORKING AND STORAGE COPROCESSORS..2

EXAMPLE: NETWORKING AND INFERENCING COPROCESSORS... 4

COPROCESSORS

OFFLOAD AND

ACCELERATE SPECIFIC

WORKLOADS, HOWEVER

DATA MOVEMENT

EFFICIENCY ACROSS THE

PROCESSING CORES AND

MEMORY IN SUCH SOC

DESIGNS IS BECOMING

PARAMOUNT.

WHITE PAPER: Efficient Data Movement in Modern SoC Designs – Why It Matters

page 2 of 5Netronome Systems, Inc.

Host
Processor

NIC

Memory Storage

Figure 1. Simple data movement scenario on the ingress path in a traditional server

In modern servers built using a heterogeneous processing architecture, multiple processing

elements exist. Besides the general-purpose host processor, the server may contain one or

more of the following coprocessors - a network coprocessor, a security coprocessor, a graph-

ics coprocessor, a storage workload coprocessor or a machine learning workload coprocessor.

If data movement is conducted with similar assumptions as in traditional servers (i.e., most

processing required and most memory and storage access functions needed in the execution

of the compute tasks are carried out by the host processor), then significant resource utiliza-

tion inefficiencies will be incurred, bringing down the productivity of the server. In fact, most

of the benefits of heterogeneous processing could be lost as a result of poor data movement

efficiency across the processing elements. The following describes some specific examples.

EXAMPLE: NETWORKING AND STORAGE COPROCESSORS

This example illustrates a heterogeneous server that includes co-processing for local storage

access acceleration. The storage coprocessor could implement functions such as RAID, era-

sure coding, deduplication, encryption and compression. Data destined for a storage device

(such as an SSD) on the server enters the server through the NIC. On the ingress path, the NIC

sends the data to the host processor which then solicits the help of the storage coprocessor

to accelerate the storage functions listed above. After this operation, once again facilitated by

the host processor, the data is finally written to the storage device (Figure 2). The same steps

in the reverse or egress direction are performed for a read operation when data is fetched

from the storage device and then sent out of the server via the NIC port. Even though the

storage coprocessor exists in the system, the host processor is still needed for many stor-

age-related operations. The cycles spent for such processing become unavailable to reve-

nue-generating applications, impacting the productivity of the server.

MOST OF THE BENEFITS

OF HETEROGENEOUS

PROCESSING COULD BE

LOST AS A RESULT OF

POOR DATA MOVEMENT

EFFICIENCY ACROSS THE

PROCESSING ELEMENTS

WHITE PAPER: Efficient Data Movement in Modern SoC Designs – Why It Matters

page 3 of 5Netronome Systems, Inc.

Host
Processor

NIC

Memory Storage

Storage
Coprocessor

Figure 2. Host processor involved in storage processing functions on the ingress path

In an efficient data movement scenario applied in Figure 2, the NIC is replaced by an intelli-

gent network coprocessor that acts as an efficient director of data to and from the storage

coprocessor, bypassing the host processor. On the ingress path, data destined for a storage

device on the server enters the server through the intelligent network coprocessor on a

SmartNIC. Data in the first flow is sent to the host processor; once the flow is learned by the

network coprocessor, it is able to send data in all subsequent known flows directly to the

storage coprocessor. Once the storage acceleration functions are executed, the data can be

directed to the storage device by the intelligent network coprocessor. The path to the stor-

age device from the intelligent network coprocessor can be via PCIe, a network port or via

the external memory interface. In a more cost-effective and streamlined implementation,

the storage coprocessor functions may be implemented along with the network coproces-

sor functions in a single chip. In this approach, the host processor is freed up from executing

storage-related operations, enabling the use of more precious cycles for revenue-generating

applications, and improving the productivity of the server. The processing scenarios presented

in this paragraph are depicted in Figures 3(a), (b) and (c).

(b)(a)

Host
Processor

NIC

Memory

Memory

Storage

Storage
Coprocessor

Memory

Storage

Storage
Coprocessor

Host
Processor

NIC

Memory

DATA IN DATA OUT DATA IN DATA OUT
(c)

Memory

Storage
Host

Processor

NIC +
Processor

Memory

DATA IN DATA OUT

Figure 3. (a) First flow of data is processed by the host; (b) All subsequent known flows are cut-
through by the network coprocessor, freeing up the Host Processor; (c) Example showing network

and storage coprocessor functions on a single chip with streamlined data movement to storage
device via the external memory interface

WHITE PAPER: Efficient Data Movement in Modern SoC Designs – Why It Matters

page 4 of 5Netronome Systems, Inc.

EXAMPLE: NETWORKING AND INFERENCING COPROCESSORS

The second example relates to coprocessing for an inferencing engine. The inferencing engine

coprocessor has high-speed access to memory such as DDR4 or HBM that works in conjunc-

tion with a local and unified memory architecture. The coprocessor also implements compute

functions such as a Matrix Multiply Unit and an Activation Pipeline, which perform the nonlin-

ear function of the artificial neuron, with options for rectified linear unit, Sigmoid, etc. The NIC

sends the input sensor data to the host processor, which then solicits the help of the inferenc-

ing engine coprocessor to process the sensor data and accelerate the inferencing functions

listed above. The output actor data from the inferencing engine coprocessor is sent back to

the host processor for further processing or sent to another processing node via the NIC. As is

obvious, the host processor is involved in getting all very high volumes of sensor data flows in

and actor data out of the inferencing engine coprocessor. The cycles spent for such process-

ing become unavailable to revenue-generating applications, impacting the productivity of the

server.

In an efficient data movement scenario applied to this example, the NIC is replaced by an

intelligent network coprocessor that acts as an efficient director of data to and from the

inferencing engine coprocessor, bypassing the host processor. Sensor data destined for the in-

ferencing engine coprocessor on the server enters the server through the intelligent network

coprocessor on a SmartNIC. Sensor data in the first flow is sent to the host processor; once

the flow is learned by the network coprocessor, it is able to send sensor data in all subsequent

known flows directly to the inferencing engine coprocessor. Once the inferencing and related

acceleration functions are executed, the resulting actor data can be directed to the next pro-

cessing node by the intelligent network coprocessor.

In a more cost-effective and streamlined implementation, the inferencing engine coprocessor

functions may be implemented along with the network coprocessor functions in a single chip,

to provide an inline inferencing function. In such a design, a common internal and external

memory access mechanism can be implemented, with processing memory for functions such

as hash lookup, atomic and bulk initialization and Matrix Multiply Unit operations. In this ap-

proach, the host processor is freed up from executing inferencing-related operations, enabling

use of more precious cycles for revenue-generating applications, and improving the produc-

tivity of the server.

In the previous examples, the notion of combining the workload-specific coprocessors into a

single chip design for higher levels of efficiency was discussed. Data movement efficiency in

such heterogeneous architectures is critical. An inefficient design can expend significant on-

chip area and power to provide memory coherence at low latency across all the programma-

ble cores. The cost of consistency grows with the data rate, the target latency for consistency

and the physical area over which consistency has to be achieved. In network processing and

many other data-intensive applications, not all data processed by a system need be consistent

at the same rate and with the same latency. Coherence for control data that specifies how

packets are to be processed is more important than coherence for packet data. Data consis-

tency or coherence requirements can be relaxed for a significant fraction of system data.

Netronome Systems, Inc.
2903 Bunker Hill Lane, Suite 150 Santa Clara, CA 95054
Tel: 408.496.0022 | Fax: 408.586.0002
www.netronome.com

©2018 Netronome. All rights reserved. Netronome is a registered trademark and the Netronome Logo is a trademark of Netronome.
All other trademarks are the property of their respective owners.

WP-EFFICIENT-DATA-8/18

WHITE PAPER: Efficient Data Movement in Modern SoC Designs – Why It Matters

page 5 of 5

NIC

DATA IN DATA OUT

Memory

Memory

Host
Processor

Coprocessor

Coherent
Memory

NIC

DATA IN DATA OUT

Memory

Memory

Host
Processor

Coprocessor

Coherent
Memory

Figure 4. Example of cut-through processing with both coherent and non-coherent (or relaxed
coherence) memory access

In heterogeneous processing architectures with efficient data movement, as highlighted in this

document, many TCO level benefits can be obtained. For example, two Intel Xeon 8180 CPUs

with a list price of $20K can be replaced with four Intel Xeon D-2173 for a list price of less than

$5K. In addition to reducing latency of operations (such as memory access) and improving

overall application performance, such efficient heterogeneous processing solutions enable the

use of significantly less expensive host processors.

