
WHITE PAPER

page 1 of 14Netronome Systems, Inc.

INTRODUCTION TO AGILIO SMARTNICS AND NETWORK FLOW
PROCESSORS (NFP)

The Agilio SmartNICs deliver high-performance server-based networking applications such as
network virtualization, security, load balancing, quality of service, and telemetry. The Netronome
Network Flow Processors (NFP-4000 and NFP-6000 family of devices) are used in the Agilio
SmartNICs. Server-based networking deployments have become mainstream in COTS servers, and
this includes implementations where networking functions are implemented inline between the
network port on PCIe server adapters and host applications or virtual machines (VM) and contain-
ers implemented in servers. It also includes networking functions implemented in VMs (as in virtual
network functions or VNFs).

The NFP-4000 and NFP-6000 family of devices (collectively called the NFPs in the rest of the
document) are programmable flow processors that can perform a range of packet processing
operations for different applications.

RELATED DOCUMENTS

DESCRIPTIVE NAME DESCRIPTION
Netronome Agilio Software version 2.0
Getting Started Guide

A guide to new users of Netronome’s Agilio Software
for server-based networking applications

Agilio Software v2.0 Programmer’s
Reference Manual (PRM)

Describes the list of APIs supported by the Agilio
Software

Programming Netronome Agilio® SmartNICs

NFP-4000 AND NFP-6000 FAMILY: SUPPORTED PROGRAMMING MODELS

CONTENTS

INTRODUCTION TO AGILIO SMARTNICS AND NETWORK FLOW PROCESSORS (NFP) ...1

NETWORK FLOW PROCESSOR (NFP) PROGRAMMING BLOCKS ..2

NFP PROGRAMMING MODELS ..3

SDK TOOL CHAIN FOR NFP PROGRAMMING .. 12

CONCLUSION ...14

THE AGILIO SMARTNICS

DELIVER HIGH-

PERFORMANCE SERVER-

BASED NETWORKING

APPLICATIONS

SUCH AS NETWORK

VIRTUALIZATION,

SECURITY, LOAD

BALANCING, QUALITY

OF SERVICE, AND

TELEMETRY.

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 2 of 14Netronome Systems, Inc.

DESCRIPTIVE NAME DESCRIPTION
Netronome Agilio Software version 2.0
Product Brief

Provides list of features and benefits offered by the
Agilio Software for server-based networking functions
such as network virtualization, security, load balancing
and statistics/metering

Netronome Network Flow Processor
6000 Family: Databook

Contains detailed reference information on the
Netronome Network Flow Processor NFP-6000 family

Netronome Network Flow Processor
4000 Family: Databook

Contains detailed reference information on the
Netronome Network Flow Processor NFP-4000 family

Netronome Network Flow Processor
Development Tools User’s Guide

Describes the Programmer Studio and the
development tools that can be accessed through the
Programmer Studio

Netronome Agilio CX and Agilio LX
SmartNIC Product Briefs

Provides list of features and benefits offered by these
PCIe Gen3 server adapters suitable for use in x86 COTS
servers

NETWORK FLOW PROCESSOR (NFP) PROGRAMMING BLOCKS

As shown in figure below, the Network Flow Processor (NFP) has the following internal blocks that
allow for networking datapath configuration and programmability. The NFP processing elements
are distributed across the chip in the form of “islands” with a high-speed CPP (command push pull)
bus connecting the islands for transfer of data between the islands. The number of islands on a
NFP depends on the SKU of the chip (NFP-4000 or NFP-6000). The NFP has the following main
components:

1. MAC island

2. Ingress and Egress processing islands (NBI)

3. FPC islands with 12 FPCs (Flow processing cores)

4. PCI, Arm, Crypto and Interlaken islands with 4 FPCs

5. Memory Units

All the islands with the FPCs are programmable using one or more of the following programming
languages P4, C, or Microcode as explained in the future sections.

Figure 1.

Memory and Hardware Accelerators PCIe Gen3x8

MAC
Classifier

Traffic Manager
Packet Modifier

DMA Engine

Host I/O with multiple
SR-IOV virtual functions

Network I/O ports
10/40/100GbE

Packet processing engines for
configurable lookup. Firmware for

configurations supported is
supplied by Netronome

Programmable flow processing
cores (FPC) for packet processing

datapaths. Programmed
using Netronome supplied

C and P4-based programming tools

Fixed functon configurable
blocks. Can be configured by

host, on-chip Arm or FPCs

 NFP Programming Architecture

THE NFP PROCESSING

ELEMENTS ARE

DISTRIBUTED ACROSS

THE CHIP IN THE FORM

OF “ISLANDS” WITH

A HIGH-SPEED CPP

(COMMAND PUSH PULL)

BUS CONNECTING THE

ISLANDS FOR TRANSFER

OF DATA BETWEEN THE

ISLANDS.

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 3 of 14Netronome Systems, Inc.

Fixed Function Hardware Blocks
The following are fixed function hardware blocks in the NFP:

■■ I/O Interface blocks (10G/40G/100G MACs and 4xPCI Gen3x8)

■■ Packet Classifier

■■ DMAs between internal blocks

■■ Traffic Manager

■■ Packet Modifier

■■ Packet sequencer

The above blocks can be configured through the control and access registers accessible through
the following:

■■ Host CPU via the PCI bus

■■ On Chip Arm (control processor)

■■ Flow processing cores (via the on chip configuration bus)

The NFP also has configurable packet classifier blocks referred as packet processing engines in
above figure, these blocks are state machine based configurable engines, which are capable of
lookup-based L2 and L3 classification of packets. Netronome provides firmware in binary form that
configures these packet processing engines.

Programmable Flow Processing cores (FPCs)
The flow processing cores or FPCs constitute the main programmable blocks of the NFP. The FPCs
can be used for packet classification and packet modification operations that can go well beyond
5-tuple classification.

Depending on the NFP SKU selected, there can be up to 120 of these FPCs in the device. FPCs are
distributed across the Islands within the NFP. Each FPC is multi-threaded and has its own instruc-
tion memory, data memory and registers for program execution. FPCs also have access to a data
bus called command-push-pull (CPP) bus and configuration bus called eXpansion Bus (XPB) for
transferring data and accessing the control and status registers respectively.

FPC programming is also assisted by:

■■ Hierarchical memory structure (up to 30MB within the NFP and up to 24GB connected as off

chip) accessed through the CPP commands.

■■ Hardware accelerators such as lookup engine, statistics engine, crypto engine, packet engine

etc. (accessible via the commands from FPCs).

The FPCs can be programmed using high level languages such as P4 or C with the Netronome
provided SDK tool chain. P4 programs are compiled using the open source P4 compiler from the
P4 consortium. P4 complier is integrated with the Netronome C compiler to provide an integrated
development environment where both P4 and C-based applications can be applied to the data-
path. The SDK tool chain also provides the capability to simulate and debug the programs on the
NFP software simulator and NFP based hardware targets such as the Agilio SmartNICs.

Detailed description of each of the above blocks is beyond the scope of this document and can be
found in the NFP 4000/6000 Family Data Books.

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 4 of 14Netronome Systems, Inc.

NFP PROGRAMMING MODELS

Both high level and low level programming models are supported. For example P4 and API based
programming are high level and when such models are used, the developer need not be aware
of internal architectural blocks of the NFP such as the CPP bus, MAC and packet classifier. Other
models support addition of C or P4-based applications as a sandbox or plug-in to the Netronome
provided Agilio Software datapath.

NFP-based Agilio SmartNICs support the following programming models:

1. Host API-based Programming Model: Using Agilio Software supported APIs

2. User Datapath Programming Model: C-based programming with configuration APIs

3. User Datapath Programming Model: P4 and C-based programming with configuration APIs

4. User Datapath Programming Model: Programming a C (or P4) sandbox or plug-in application
into the Agilio Software datapath

Each of the programming models above is described in detail in the next sections.

Host API-based Programming Model
This high level programming model is supported with Netronome Agilio SmartNICs. In this model,
the SmartNIC is supplied with the production quality Agilio Software in binary form. The features
supported includes:

■■ PCIe and Network I/O configuration (includes the host interface drivers)

■■ Standard datapath features (via Open vSwitch (OVS) offload, tunneling, match-action etc.)

usable via supported API calls

The Agilio Software v2.0 that is currently available supports the OVS v2.3 and v2.4 datapaths – for
further details please see the appropriate Agilio Software documentation. The host API program-
ming model works with the Agilio Software datapath.

Netronome has developed the Agilio Software provided with the Agilio SmartNICs using the NFP
internal blocks and hierarchical memory most efficiently. The users of the Agilio Software are ex-
pected to just call the Agilio Software APIs to meet the requirements of their use cases.

The Agilio Software datapath supports match-action processing along with support for a unique
hardware-based flow cache implementation for fast path processing. The classification of the
ingress packets is performed using the match fields as configured by the user and action is taken
on individual packets based on the match entry. The Agilio Software is based on the OVS datap-
ath that is offloaded from the kernel to the NFP, along with the additional features such as auto
learning flow-cache, load balancer and tunneling. Additional features are planned for the Agilio
Software with future releases.

The features supported by the Agilio Software can be used through the Agilio API calls described
in the Agilio Software Programmer’s Reference Manual (PRM). The user is not required to learn
about the internal architecture of the NFP.

Figure 2 below explains the high level architecture of the Agilio Software. The Agilio Software
blocks shown in the figure are implemented using the three NFP hardware blocks described above.
Any configuration and FPC programming details are kept hidden from user. The kernel mode por-
tion of the OVS software (repeated hash tables and OVS kernel actions) is replicated and offloaded
in the NFP.

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 5 of 14Netronome Systems, Inc.

Figure 2.

Open vSwitch Datapath

Open vSwitch Subsystem

x86 Kernel

x86 User Space

PCIe

Self Learning
Exact Match
Flow Tracker

Virtual Machine

SR-IOV VFs SR-IOV VFs

Agilio SmartNIC

Flow Table Hit

1

1

1

2

2

3

3

Configuration via controller, CLI, or Local API

OVS user space agent populates kernel cache

O�oad hooks from kernel OVS to Agilio OVS

Execute Action
(e.g. Detunnel ,

Deliver to VM,
Send to Port)

OVS
Agent

OVS Match/
Action Table

Tunnel
Lookup

OVS Match/
Action Table

Tunnel
Lookup

Execute
Action

OVS CLI Local API

Apps Apps

netdev or DPDK netdev or DPDK

OVS offload and tunneling implemented in NFP programming blocks

The Agilio Software features are available to the user through API calls. These APIs can be called
via the command line or integrated into the application software to configure the datapath in the
Agilio SmartNIC.

The following set of API calls are available for use with the Agilio Software:

1. Local Flow Table APIs - Used to manipulate the Agilio Software flow tables. They are compati-
ble with OpenFlow v1.3 specifications. The Agilio Software is provided with sample applications
that demonstrate the use of these APIs.

2. Local Packet APIs – Allows the users to interact with the network packets on the host installed
with Agilio SmartNIC and Software. Sample applications that demonstrate the use of these
APIs are included in the Agilio Software package.

3. Group APIs – These APIs allow the users to manipulate (add, modify, delete) group entries in
Agilio Software-supported group tables.

4. Meter APIs – Allows the user to manipulate (add, modify, delete) meter entries in the Agilio
Software-supported meter tables.

5. Health monitoring APIs – Allows the user to monitor the system health on the host OS. Users
can create their own health monitoring applications. Sample applications that demonstrate the
use of these APIs are included with the Agilio Software.

Please refer to the Agilio Software Programmer’s Reference Manual (PRM) for details on how to
use the above API calls.

Using the above API calls the following example applications can be configured on the NFP-based
Agilio SmartNIC:

■■ Traffic engineering and network virtualization

■■ Learning L2 bridge

■■ Layer-3 routing functionality

■■ Load balancing to physical and virtual ports.

■■ Wire – fast path configuration

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 6 of 14Netronome Systems, Inc.

■■ Adding and removing packet tags

■■ Running any host DPDK application with NFP virtual functions.

■■ Accelerated origination and termination of VXLAN and NVGRE tunnels on NFP

The above list just shows some example applications and does not cover the complete function-
ality of the Agilio Software. Please refer to complete documentation supplied with the Agilio
Software for additional details.

User Datapath Programming Models
This model is targeted for users who want to program the datapath on the Agilio SmartNIC and
NFP. Both simple and complex datapaths can be programmed utilizing the three methods de-
scribed in this section. In general, while selecting which model is most suitable, the user should
consider the characteristic of the desired datapath:

■■ Datapath is based on a free form pipeline where a developer can write any packet-processing

pipeline.

■■ Datapath is based on the match-action paradigm, which is similar to the Open vSwitch (OVS)

pipeline supported by the Agilio Software as described in above section. In this model, the

match-action datapath for example, may be fixed by a P4 program while the custom actions are

defined by a C program.

C-Based Programming with Configuration APIs

This model allows for the complete control of the programmable datapath using the FPCs. The
user utilizes software drivers and configuration APIs that provide the needed functionality of the
fixed function configurable blocks, configurable classifier and part of the programmable FPCs.

These API sets include the following:

■■ PCIe driver for the host – C code for receiving and sending packets from and to host respectively

■■ GRO – Global Re-Ordering software in C

■■ Sample NIC send/receive applications C

■■ 10GbE/40GbE network ports initialization APIs

■■ Hardware Classifier initialization APIs

■■ Hardware Traffic Manager configuration APIs

■■ Look up based pre classification firmware

■■ Buffer list Manager Code – For ingress and egress packet buffering and DMA to the Flow Pro-

cessing Cores (FPCs)

Using the above APIs and source code written in C supported by the Netronome SDK tool chain,
users can modify, add or write their own datapath application.

One example of this model is shown in Figure 3. In this model, users write the C code for the packet
classification and actions functions in the datapath and compile using the Netronome SDN tool
chain.

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 7 of 14Netronome Systems, Inc.

Figure 3.

C

Match Fields

Ingress
Processing

in C
Additional field extract
Add/modify metadata

NBI Ingress
Process

(pico code and
configuration)

or packets
from Host
via PCIe

Config. Config.

NBI Ingress
Process

(pico code and
configuration)

or packets
from Host
via PCIe

Actions

MAC DA/SA Drop

VLAN Count

COS Egress proc.

IP DA/SA Encap/Decap

COS Egress proc.

IP DA/SA Encap/Decap

C only datapath

Egress
Processing

in C
Process metadata

Packet modification
Stateful operation
Count same flow

Drop and count flow

C code – FPC processing in C

Example of NFP datapath written in C

This programming model is facilitated by sample C libraries and applications provided by Netro-
nome. Figure 4 provides the list of programming resources provided for this model.

Figure 4.

Netronome Software
Development Kit

Configurable Blocks Configurable Classifier Programmable Cores

Std. F/W & Libs

Netronome Network Flow Processor (NFP

C Program

MAC APIs
Classifier Configuration
Traffic Manager APIs
Packet Modifier APIs
DMA Configuration
PCI Configuration
Memory Access
CPP Access

Sample C Code
Netronome application
libraries in C
User written C code
Server-based networking apps
for SDN & NFV deployments

Netronome provided firmware
for lookup based packet
classification

Format of the metadata
generated through the lookup
is provided in library source
file and documentation

Resources for NFP Programming Model using C

Netronome C Libraries

This C-based Programming Model also comes with Netronome-provided C libraries for basic pack-
et operations and low-level NFP access functions. These libraries are pre-verified and include the
detailed documentation describing their functionality.

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 8 of 14Netronome Systems, Inc.

The following are some standard C libraries provided as sample code:

■■ Memory Lookups
• Hash lookup
• Index lookup
• Lookup and add

■■ Header Parsing
• Ethernet
• ARP/IPv4/IPv6
• TCP/UDP
• GRE/NVGRE/VXLAN

■■ Common NFP Access and Engines
• PCIe Read/Write/DMA
• Memory Ring operation (push/pop)
• TCAM lookups
• CRC computations
• Register configuration

■■ Packet Operations
• Receiving/sending packet from/to Network ports
• Reading number of bytes from memory
• L3/L4 checksum calculation
• Packet modification script
• DMA packet between memories
• Drop a packet and free buffer

P4 and C-based Programming with Configuration APIs
This NFP programming model is meant for users who want to program the datapath in a hard-
ware-agnostic way. In this model, users do not need to know the details of the underlying NFP
architecture.

P4 is target independent network programming language where users can write the forward-
ing behavior of the network devices (ASIC/NPUs/FPGAs) using the standard forwarding model
defined in the P4 architecture. P4 allows the user to create their own packet headers and protocols
along with their processing behavior in a networking device.

The packet-processing model proposed by the P4 language is shown in Figure 5. User writes the
datapath of a network device in P4 language without any knowledge of the target hardware. The
P4 tool chain developed by the device vendor converts the P4 program into the device specific
firmware. P4 tool chain also generates a run time API (similar to open flow model) to allow the
match-action table modification.

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 9 of 14Netronome Systems, Inc.

Figure 5.

P4 Program for datapath configuration
(parser + Ingress MA + Egress MA)

with the control path.

P4 Tool Chain

Packet In Packet Out
Packet Parser
defined by P4

Tra�c
Manager

Ingress Match-
Action Table

defined in P4
Program

Egress Match-
Action Table

defined in P4
Program

Run Time API generated by
compiler for MA table modification

Packet processing model using the P4 language

While the P4 language enables hardware agnostic programming of the network device, there may
still be a need for device specific customizations. Some examples of such custom features include:

■■ Stateful packet filtering

■■ Stateful statistics collection (based on the flows)

■■ Sending messages to Host (Control and Data)

■■ Hash Table modifications

■■ Atomic operations

■■ QoS implementation (Traffic Manager and buffering)

To enable such extensions to P4-based programmability, Netronome provides the ability to extend
P4 datapath features with C-based custom applications. This is also referred to as application of
C-based sandbox or plugins to a P4-defined datapath.

For example, the following suggested steps may be taken to implement this programming model:

■■ Use of Netronome provided API calls for PCIe and Network I/O configuration functions

■■ Use of Netronome provided classification firmware

■■ Use of sample programs that demonstrate the use of P4 and C datapath programming using

this model

■■ Review of provided C libraries that can be used as a Sandbox or plugin application

■■ Use the SDK tool chain to compile the P4 and C programs to generate and install the needed

datapath on the NFP

Figure 6 below shows an example of this programming model as implemented on the NFP.

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 10 of 14Netronome Systems, Inc.

Figure 6.

C P4P4

Match Fields

Parser
Field Extract

and Metadata
Generate

(Port, IP, DA/SA, MAC,
DA, SA, TCP, SP, TCP,
DP, MPLS Label, ET)

Ingress Process
Packets from
Network Port

or Host via PCIe

Packets to
Network Port or
to Host via PCIe

Config.

Egress
Processing

in P4

Actions

MAC DA/SA Drop

VLAN Count

SP To Host

DP To Port

COS Egress process

IP DA/SA To Sandbox

Drivers/API for PCIe and
Network Configuration

C Sandbox

User C code P4 code Config.User P4 Code (dathpath)

Process metadata
Packet modification
Stateful operation
 - Count same flow
 - Drop and count flow

Packet Mod. Counter

Label push/pop

Metadata based
processing

P4 datapath with C sandbox implemented on NFP

The implementation described above requires the Netronome SDK tool chain with the P4 pro-
gramming support. The details of the SDK tool chain and features supported are described in a
future section.

Programming a C (or P4) Sandbox App into the Agilio Software Datapath

This NFP programming model is still under planning however some initial architecture and
high-level plans are discussed in this section Figure 7 represents the proposed C or P4 Sandbox
application implementation along with the main datapath defined and supported by the Agilio
Software.

Since Netronome has implemented Agilio Software by taking advantage of all the NFP hardware
resources and accelerators, this method potentially represents one of the most feature-rich, perfor-
mance and resource-optimized implementation of packet processing datapath on the NFP, which
includes the applications that require network-to-host, host-to-network and network-to-network
ingress and egress packet flows.

This programming model is offered with the following components:

■■ Agilio Software in binary form

■■ C Sandbox libraries

■■ SDK tool chain that supported integrated C and P4-based programming

■■ Sample sandbox programs in P4 and C

The sandbox (or plugin) application shown in Figure 7 can be implemented either in C or P4. Also
the sandbox functionality can be replicated in the user/kernel space to allow for the fallback path
of the sandbox implementation.

In the sandbox implementation example shown, an OVS match-action table implements one of the
actions as “send-to-sandbox,” where the “send-to-sandbox” action can be one of the logical ports
directing to the C sandbox code.

This sandbox can be implemented as

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 11 of 14Netronome Systems, Inc.

■■ Custom/Primitive action in the form of a plugin stateful function running on the same FPC.

■■ Extended match action functionality implemented in P4/C (as described in an earlier section)

running on separate set of FPCs. In this case the packets from Agilio Software to the sandbox

are transferred via the ring based transfer mechanism between the FPCs.

The proposed implementation of the P4/C sandbox is not designed to feed every packet into the
sandbox code, as by doing so there may be performance implications.

Figure 7.

DPDK Apps Userspace
OVS tables

x86 User

Kernel

NFP

Kernel
Repeated Hash

OVS tables

OVS Repeated
Hash

Match-Action Tables

Self Learning
Flow Cache

C sandbox
functionality

replicated in user
and kernel space
for fallback path

C sandbox
stateful operation,

QoS etc.

NFP
egress
Config.

PCIe Gen3 x8

H/L ops
NFP access primitives
Sandbox LIbrary

Local APIs

OVS
packet/table

library

Agilio Software with the C app sandbox implementation on the NFP

The NFP datapath associated with the Agilio Software based sandbox model is shown in Figure
8. The details of this programming model such as sandbox functionality actions, number of FPCs
available for the sandbox functionality, libraries etc. is still in the planning and development stage.
More details will be available in future version of this and other related documents.

Figure 8.

C sandbox Agilio SWAgilio SW

Match Fields

Agilio Classifier

Field extract and
metadata generate

(port, IP, DA/SA, MAC
DA, SA, TCP, SP,
TCP DP, MPLS

Label, ET)

Agilio Egress
Processing

Actions

MAC DA/SA Drop

VLAN Count

SP To Host

DP To Port

COS Egress process

IP DA/SA To Sandbox

Agilio Software datapath with C sandbox

C/P4 Sandbox

User C/P4 code

Running in ME2Running in ME1

Agilio EgressAgilio Datapath (OVS tables)

Process metadata
Packet modification
Stateful operation
 - Count same flow
 - Drop and count flow

Packet Mod. Counter

Label push/pop

Metadata based
processing

NFP datapath with Agilio Software and C/P4 sandbox

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 12 of 14Netronome Systems, Inc.

SDK TOOL CHAIN FOR NFP PROGRAMMING

This section provides a brief introduction to the SDK tool chain for programming the NFP device in
Agilio SmartNICs. The SDK tool chain can be used to exercise the programming options described
in user datapath programming models above.

Netronome’s SDK tools can run on Windows and Linux platforms. The Windows version of the
tool chain comes as an integrated development environment (IDE) that combines both C and P4
programming, and allows the full visibility of the chip features with a graphical user interface (GUI)
that includes a simulator and a hardware debugger. The Linux version of the tool chain provides a
similar set of features and can be exercised through the Linux command line interface (CLI).

Figure 9 below shows all the components of the SDK tool chain available in the Windows and Linux
environments.

Figure 9.

Editor with language highlight
and breakpoint support

P4 front end compiler

IR front end compiler

Simple_Router.IR Compiler (nfcc) Linker C scripting

Loader

Simulator

Assembler (NFAS)

Simple_Router.C

Hardware Debugger
connect through Host

Simple_Router.p4 Packet_filter.c

SDK-6 - Integrated Development Environment (IDE)

Agilio SmartNIC

SDK tool chain components for NFP programming

The following is a summary of code development tools and features included in the SDK tool chain:

■■ Integrated development environment (IDE) in windows

■■ P4 front end compiler (see below for further information on P4 support)

■■ IR (intermediate representation) back end compiler

■■ Netronome C compiler

■■ C scripting for the NFP configuration

■■ Netronome microcode assembler (for any legacy microcode/assembly based applications and

libraries)

■■ Linker (links the compiler code to generate the NFP firmware)

■■ Loader (loads the NFFW files to the NFP)

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 13 of 14Netronome Systems, Inc.

The following is a summary of profiler and debugger features included in the SDK tool chain:

■■ Cycle accurate event and queue history

■■ Cycle accurate history collection for FPC threads

■■ Performance profiling and bus bandwidth estimates

■■ Hardware debugger which runs on the Host and communicates to NFP via the PCIe bus to NFP

to allow runtime debugging of Netronome SmartNICs

Detailed description of each of the SDK components mentioned above is available in the docu-
mentation supplied with the SDK package.

Netronome supports the P4 programming language as defined in the P4 Consortium (www.
p4.org). Netronome has integrated the open source P4 compiler developed by the P4 Consortium
to generate an intermediate representation (App.IR) of the P4 program in the yaml format, which
is further compiled by the Netronome’s back end compiler to generate target specific C implemen-
tation of the NFP datapath.

Figure 10.

App.P4

App.IR

Runtime I/FTabledata.JSON

FE Compiler

BE Compiler

NFCC

App. Firmware

Sandbox C

Optional

Stateful Filtering
• Filter packets of fixed IP addresses
• Filter the IP address with TCP ports,
 add VLAN tag

Stateful Statistics
• Count a flow — with a fixed IP address
• IPv4/6 statistics

• MAC/IP address filtering
• New tunnels processing
• Insert new metadata
• Match on certain fields
• Mirror based on metadata
• Truncate mirrored packet
• Attach timestamp to packet

Run time API generated
by P4 compiler

Agilio SmartNIC

Netronome’s
backend compiler

Yml based IR
from OpenSDN.org

Open source P4 compiler
integrated in SDK from P4.org
enhanced to supprt the IR
layer from OpenSDN.org

Implementation of P4 datapath with C sandbox on NFP using SDK

The back end compiler generated C files (from P4 code) are compiled together with the custom
(sandbox) C files to generate the firmware to be downloaded on the NFP.

Table entries compiled in the JSON format are programmed into the NFP in the Agilio SmartNIC
using run time APIs. These APIs support functions such as addition, modification or deletion of the
NFP datapath match-action table entries.

CONCLUSION

Netronome’s Agilio SmartNICs with Agilio Software provides high-performance networking for
modern data center servers. The Agilio solution accelerates server-based networking functions
such as network virtualization, security, load balancing and telemetry. The Agilio solution is built on
the Netronome NFP which is a programmable device optimized for network datapath processing.
The NFP along with the SDK tool chain supports a variety of datapath programming models where
users can select one of the models based on their requirements.

Netronome Systems, Inc.
2903 Bunker Hill Lane, Suite 150 Santa Clara, CA 95054
Tel: 408.496.0022 | Fax: 408.586.0002
www.netronome.com

©2018 Netronome. All rights reserved. Netronome is a registered trademark and the Netronome Logo is a trademark of Netronome.
All other trademarks are the property of their respective owners.

WP-NFP-Prog-Model-7/18

WHITE PAPER: Programming Netronome Agilio® SmartNICs

Page 14 of 14

The Host API model utilizes the Netronome-supplied production quality Agilio Software that
implements standard datapaths such as in OVS. This model is suitable for users who want to use
available features in the Agilio software datapath, and are not interested in any custom program-
ming of the datapath or understanding architectural details of the NFP.

The C-based programming model can be used to program a new datapath. An example of this
can be development of complete packet classification and processing pipeline for server-based
networking applications such as telemetry or load balancing.

The P4 only or P4 with C sandbox model of programming is suitable for the users who want to
program the NFP hardware but is not interested in learning the architectural details of the NFP
device. The P4 language can be used to implement a hardware-agnostic match-action processing
datapath. C-based sandbox applications may be added to such a pipeline for special features such
as stateful filtering. This requires some familiarity with the Netronome NFP data structures and
knowledge of the SDK tool chain.

The Agilio Software-based Host API model combined with the C sandbox model holds the promise
of delivering high performance as well as faster go to market capability while allowing for datapath
customizations, provided the features supported by the Agilio Software meets most of the users’
needs.

The above programming models are enabled by Netronome’s SDK tool chain described above.
Netronome’s SDK v6.0 will come with an integrated development environment that supports both
P4 and C software development and debugging environment.

