
WHITE PAPER

page 1 of 7Netronome Systems, Inc.

1 . INTRODUCTION

Netronome Agilio SmartNICs are based on Network Flow Processors (NFPs). The NFP

architecture improves throughput and reduces power with specialized programmable cores,

accelerators and a data movement architecture based on relaxed coherence. The program-

mable Flow Processing Cores (FPCs) enable a rapid rate of innovation in SmartNIC features

and functionality. Network packet processing in network interface cards (NICs) is a data-in-

tensive task that needs to meet stringent power and performance budgets. At a 50Gb/s line

rate, a NIC has less than 13ns to process a packet, under a power budget of 25W. Vendors

typically design and offer fixed-function devices to meet these requirements. In contrast, as

workloads evolve, cloud/network operators can upgrade the functionality of the SmartNIC

post-deployment by changing the firmware on the NFP.

To achieve performance goals, a multi-core processor also needs an efficient data move-

ment architecture. An inefficient design can expend significant on-chip area and power to

provide memory coherence at a low latency across all the programmable cores. The cost of

consistency grows with the data rate, the target latency for consistency and the physical area

over which consistency has to be achieved. In network processing and many other data-in-

tensive applications, not all data processed by a system need be consistent at the same rate

and with the same latency. Coherence for control data that specifies how packets are to be

processed is more important than coherence for packet data. Data consistency or coherence

requirements can be relaxed for a significant fraction of system data.

The NFP architecture can meet the functional requirements for a wide range of applica-

tions, such as virtual switching, routing, tunneling, BPF/XDP-based filtering, DDoS, etc. at

exceptionally high-performance line rate needed in next-generation data centers. Section 2

reviews the architecture of the NFP. Section 3 discusses the programming model.

Netronome NFP: Theory of Operation

CONTENTS

1 . INTRODUCTION ..1

2. ARCHITECTURE OVERVIEW ..2

3. PROGRAMMING THE NFP ...5

4. CONCLUSION ..7

TO ACHIEVE

PERFORMANCE GOALS,

A MULTI-CORE

PROCESSOR NEEDS

AN EFFICIENT

DATA MOVEMENT

ARCHITECTURE.

WHITE PAPER: Netronome NFP: Theory of Operation

page 2 of 7Netronome Systems, Inc.

2. ARCHITECTURE OVERVIEW

Figure 1 shows the significant Logic Blocks in an NFP architecture. Data enters the NFP

from the network ports or hosts through the Enhanced Network Interface or Enhanced

Host Interface Logic Blocks respectively and is pre-processed at the interfaces so it can

be directed to the right location and processed more efficiently. Packet processing in the

Enhanced Network Interface occurs using Design Blocks such as the Packet Classifier and

Packet Characterizer. The Enhanced Host Interface Logic Block includes PCIe, DMA and I/O

virtualization-related Design Blocks. Most packet processing occurs at the Network Process-

ing Logic Block instances composed of multiple FPCs and local memories. Packets and flow

state are stored in internal and external memories, connected through Internal and External

Memory Controller Logic Blocks. In the next subsections, the discussion will focus on some of

the Logic Blocks used in the NFP.

ENHANCED NETWORK INTERFACE LOGIC BLOCK

INTERNAL MEMORY CONTROLLER LOGIC BLOCK

ARM SUBSYSTEM LOGIC BLOCK

ENHANCED NETWORK INTERFACE LOGIC BLOCK

NETWORK PROCESSOR
LOGIC BLOCK

SECURITY PROCESSOR LOGIC BLOCK

LEGEND

EXTERNAL MEMORY CONTROLLER LOGIC BLOCK

ENHANCED HOST INTERFACE LOGIC BLOCK

ANCED NNETWORK INTERFACE LOGIC BLOCKD NENHAANC

NAL MEMORY CONTROLLER LOGIC B

RNAL MEMORY CONTROLLER LOGIC BL

NHANCED HOST INTERFACE LOGIC BLOC

ANCED NNETWORK INTERFACE LOGIC BLOCKD NENHAANC

ARM SUBSYSTEM LOGIC BLOCK

LOGIC BLOCK

SECURITY PROCESSOR LOGIC BLOCK

Cluster of
FPCs with
local memory

INGRESS

EGRESS

Packet
Classifier

Lookup

SRAM Memory

SRAM Memory

Stats

Atomic Bulk

LB Multiplier*

Lookup Stats

Atomic Bulk DDR
Memory

LB Multiplier*

Lookup Stats

Atomic Bulk

FPC

FPC

FPC

FPC

LB

Local
Mem

Local
Mem

Local
Mem

PCI Controller

Bulk Crypto
Engine

Bulk Crypto
Engine

Arm
Subsystem

Multiplier*

Tra�c
Manager

M
A

C

Se
rD

es

Packet
Modify

Packet
Reorder

Packet
Characterizer

INGRESS

EGRESS

Packet
Classifier

Tra�c
Manager

Se
rD

es

M
A

C

Packet
Modify

Packet
Reorder

Packet
Characterizer

Cluster of
FPCs with
local memory

FPC FPC FPC FPC FPC FPC

FPC FPC FPC

Local Memory

FPC FPC FPC

FPC FPC FPC FPC FPC FPC

FPC FPC FPC

Local Memory

FPC FPC FPC

FPC FPC FPC FPC FPC FPC

FPC FPC FPC

Local Memory

FPC FPC FPC

FPC

FPC FPC

FPC FPC IO Virt

PC
I G

3x
8

Bu
lk

 In
it*

Lookup Stats

Atomic Bulk DDR
Memory

LB Multiplier* Bu
lk

 In
it*

Lookup Stats

Atomic Bulk DDR
Memory

LB Multiplier* Bu
lk

 In
it*

DMA
FPC FPC

Local
Mem

PCI Controller

FPC FPC IO Virt

PC
I G

3x
8

DMA
FPC FPC

Local
Mem

PCI Controller

FPC FPC IO Virt

PC
I G

3x
8

DMA
FPC FPC

Local
Mem

PCI Controller

FPC FPC IO Virt

PC
I G

3x
8

DMA
FPC FPC

FPC FPC

FPC FPC

FPC

Netronome IP Third-Party IP

FPC

FPC FPC FPC FPC FPC

FPC FPC FPC

Local Memory

FPC FPC FPC

Figure 1. Logic Blocks in the NFP architecture

Network Processor
Network Processor Logic Block instances, as shown in Figure 1, consist of clusters of multiple

FPCs and local memories. The FPCs in a Network Processor instance can share instruction

memory and have low-latency access to other memory in the same cluster. The elements

of the cluster within a Network Processor Block instance are tied together using the Island

Master Bridge (IMB) bus. Figure 2 focuses on the details of this block to show how the bus

interfaces enable each FPC to communicate with other FPCs within the Logic Block or to

other Logic Blocks. The figure also includes (in the bottom-right corner) an abstracted view

of the Network Processor Logic Block with six Distributed Switch Fabric (DSF) interfaces.

A FPC is the principal data processing unit in the NFP. Most Logic Blocks have one or more

FPCs as shown in Figure 1. A single FPC provides programmers with storage of up to 32K

WHITE PAPER: Netronome NFP: Theory of Operation

page 3 of 7Netronome Systems, Inc.

instructions and 40-bit address space for programmable packet processing. Devices in the

NFP-6000 family contain up to 120 FPCs. Given the classical disparity between FPC clock

rate and external memory accesses, a single thread of execution would very frequently stall

a processing unit, simply waiting for memory operations to complete. An FPC provides

support for software-controlled, multi-threaded operation. Having multiple threads (such as

the 32 available in the FPC) allows for “thread interleaving” where there is, very often, at least

one thread ready for execution. Developers use a run-to-completion model in which a “sea

of worker” FPCs service a work queue to process packets. This is covered in greater detail in

Section 3.

Figure 2.

FPC FPC

Command Push Pull (CPP) Bus

Distributed Switch Fabric (DSF)
Manager Logic

Depiction of an instance of processing
engine (using a FPC) in the

Network Processor Logic Block

DSF Bus
Interfaces

CPP Bus
Interface

Global Control
Bus

Multiple
Instances

Local MemoryFPC FPC FPC FPC FPC

FPC FPC FPC

Local Memory

FPC FPC FPC

FPC FPC FPC FPC FPC FPC

FPC FPC FPC

Local Memory

FPC FPC FPC

NETWORK PROCESSOR
LOGIC BLOCK

NETWORK
PROCESSOR

Details of the Network Processor Logic Block

Distributed Switch Fabric
The Distributed Switch Fabric (DSF) interconnect is the main global bus in an NFP. As shown

in Figure 3, an NFP is physically implemented as a tiled array of Logic Blocks. In each Logic

Block, bus agents provide the connectivity from the Logic Block to the rest of the NFP. The

DSF is logically global but has no central logic. It is physically implemented entirely from

near-neighbor connections between adjacent blocks (shown as connector blocks in Figure

3). Depending on the number of DSF interfaces implemented in each Logic Block, the result

can be a K-dimensional fabric. In the specific example shown in Figure 3, each Logic Block

has six DSF interfaces (K=6). Each 64-bit wide DSF interface link at 1GHz delivers 128Gb/s

of bidirectional bandwidth into each Logic Block at the nodal point. So, a total of K*128Gb/s

throughput is theoretically possible across each Logic Block. In the Figure 3 example, each

Logic Block can support 768Gb/s of bidirectional bandwidth.

The distributed nature of the DSF enables the creation of an identical overlay mesh for all

Logic Blocks as shown in Figure 3. Data transfers on the DSF can be orchestrated program-

matically. The DSF command syntax is extensible and supports commands for data transfer

and even processing at remote bus agents in a different island. For example, FPCs can create

data transfers such that accelerator blocks can have data transferred to/from memory and/

or external I/O directly, and issue commands to process data at a remote location where it

resides, minimizing data movement and processing time.

WHITE PAPER: Netronome NFP: Theory of Operation

page 4 of 7Netronome Systems, Inc.

Figure 3.

Enhanced
Host Interface

Network
Processor

Network
Processor

Network
Processor

Enhanced
Network Interface

External
Memory

Controller

External
Memory

Controller

Internal
Memory

Controller

Network
Processor

Enhanced
Host Interface

Network
Processor

Security
Processor

Network
Processor

Enhanced
Network Interface

Network
Processor

Arm
Subsystem

Network
Processor

Network
Processor

The Distributed Switch Fabric and tiled design

Processing Memory
The NFP has a second type of Logic Block to enhance data movement efficiency - unique

Processing Memories that combine data storage, access and compute. Each Processing

Memory comes with multiple engines to support an extensive array of functionality for data

storage and manipulation right in the memory (see Figure 4). At every memory unit, in

addition to a traditional controller, compute engines support a variety of operations, each

processing data based on the commands received over the DSF. When combined with the

ability to execute remote commands on the DSF, Processing Memory enables significant

compute at the memory, including atomic operations, bulk transfer, distributed statistics

collection and a wide range of table and trie data-structures. Many network functions can be

executed on data where it resides in memory, reducing data movement costs and processing

time.

Figure 4.

Processing Engines

*Feature in concept or development

Single/Dual-Port Only for Ext. I/F

CAM/
Hash/
Trie

Lookup

SRAM
Block

DRAM
Controller

Bus
Interface

Adder/
MAC*

Atomic

Stats

Bulk

Processing memory architecture

Enhanced Network Interface
The NFP implements Enhanced Network Interfaces (ENIs) in which logic attached directly

to L2 interfaces conditions packets as they are received by and when they leave the NFP.

As shown in Figure 1, the ENI provides a wide array of dedicated hardware functionality to

condition packets entering the NFP to minimize processing costs in the rest of the NFP.

WHITE PAPER: Netronome NFP: Theory of Operation

page 5 of 7Netronome Systems, Inc.

On packet ingress, the ENI sequences incoming packets, classifies and prioritizes packets and

flows according to preconfigured rules, and prior to delivery for further processing by other

islands in the NFP. Pre-classification reduces the computational load on FPCs and enables

distributed computing with memory engines. On the egress side, the ENI reorders pack-

ets, can modify packets, and using a sophisticated Traffic Manager, schedules and shapes

outbound packets. Packet data, including the packet header and other L2 or L3 information,

may be rewritten based on metadata scripts provided by the FPCs and prepended to the

packet.

Enhanced Host Interface
This section describes the Enhanced Host Interface (EHI) Logic Block in an NFP. Current NFP

devices use PCIe Gen3x8 Design Blocks (up to four of them). The EHI combines multiple

PCIe, FPC and Processing Memory Design Blocks, along with a DSF interface for connectivity

to other Logic Blocks. Each PCIe block in the EHI Logic Block enables transactions to be both

received and initiated. The number of blocks in the design varies across implementations.

When configured as a PCIe Endpoint, transactions received allow access to internal registers,

engines and local memory, as well as other Logic Blocks, such as the Internal Memory Con-

troller and the Arm Subsystem. When configured to be a Root Complex, the PCIe generates

link transactions to discover, configure and manage other endpoints. Supporting both modes

and processing these transactions, the PCIe component provides both a control and data

plane interconnect for a wide range of platforms and applications.

The EHI includes an adequate number of FPCs and local memory along with the PCIe Design

Blocks, enabling programmatic flexibility in how data is delivered to the host. For example,

features like programmable receive side scaling (RSS) can be implemented to enable appli-

cation-specific optimized delivery of data to host CPU cores.

3. PROGRAMMING THE NFP

The NFP is programmed using a run-to-completion model with tight consistency for control

flow and relaxed coherence for packet data processing.

Run-to-Completion
In this model, FPCs are used in one or more groups of workers, with all the FPCs in one

group servicing a common work queue. On packet ingress, packets leaving the ENI Logic

Block are placed into a work queue. On egress, a reordering block in the ENI sequences pack-

ets to leave in the order they entered the NFP and passes the packets to a traffic manager. In

between ingress and egress, packets are processed by one or more FPC groups in a pipeline.

Each group services packets from a work queue and inserts its output into another work

queue. FPCs in a work queue also update state for the flow to which a packet belongs. The

assignment of work queues to FPC groups is managed by the developer. In general, FPCs

in one cluster in the Logic Block are typically assigned to a common work queue since they

can share their instruction store. Though packet processing order is not guaranteed, global

packet ordering is preserved on packet egress.

THE NFP IS

PROGRAMMED USING A

RUN-TO-COMPLETION

MODEL WITH TIGHT

CONSISTENCY FOR

CONTROL FLOW AND

RELAXED COHERENCE

FOR PACKET DATA

PROCESSING.

WHITE PAPER: Netronome NFP: Theory of Operation

page 6 of 7Netronome Systems, Inc.

Relaxed Coherence/Single Data Copy
Internal memory in an NFP is realized as multiple memories in multiple Logic Blocks. Howev-

er, all memory in an NFP operates as part of a global address space. Though not all mem-

ories have the same access latency, the DSF enables high-bandwidth and low-latency data

transfers between any data processing element and memory. Therefore, application logic on

FPCs and other processing elements on the DSF can operate with relaxed coherence, with a

single copy of all data. Any processing element operates on a single copy of the data even if

the cost of accessing the data is not uniform across different processing elements. Relaxed

coherence eliminates the costs associated with hardware or software to maintain multiple

coherent copies of data. Multi-thread support in the FPCs ensures the FPC’s datapath does

not stall waiting for data on reads.

Programming Abstractions
The run-to-completion programming model can support both network-to-network and

network-to-host packet flows. The model can be presented to the programmer in a variety of

abstractions.

■■ The NFP can be programmed directly with low-level control in microcode. The programmer

controls all aspects of the NFP’s operation. Developers have implemented virtual switching

functions using this programming method.

■■ With a toolchain from Netronome, the NFP can also be programmed at a higher level of

abstraction using a variant C language optimized for this architecture. Developers have im-

plemented network virtualization and overlay functions based on virtual routing and MPLS

using this programming method.

The NFP can also be programmed in models in which the programmer has to code just

the network datapath functionality in a high-level language. A software infrastructure from

Netronome manages memory, compiles the high-level language and services network/host

interfaces.

■■ eBPF is a mechanism by which custom functionality can be added dynamically to the Linux

kernel. Netronome has upstreamed tools for transparent offload of eBPF/XDP applications.

Developers can transparently offload eBPF/XDP applications to the NFP with an open

source toolchain. Developers have demonstrated offload for many applications including

load balancers, DDoS filters, and intrusion detection system filters.

■■ P4 is a relatively new high-level network datapath programming language in which devel-

opers can programmatically specify a match-action datapath. Netronome’s SDK provides a

toolchain for developers to compile P4 applications to NFPs.

Over 60 universities and companies are developing eBPF/XDP and P4 applications on the

NFP through the open-nfp.org research portal.

Netronome Systems, Inc.
2903 Bunker Hill Lane, Suite 150 Santa Clara, CA 95054
Tel: 408.496.0022 | Fax: 408.586.0002
www.netronome.com

©2018 Netronome. All rights reserved. Netronome is a registered trademark and the Netronome Logo is a trademark of Netronome.
All other trademarks are the property of their respective owners.

WP-THEORY-OPS-08/18

WHITE PAPER: Netronome NFP: Theory of Operation

page 7 of 7

4. CONCLUSION

The NFP SoCs are used in SmartNICs to provide in-field flexibility to cloud and data cen-

ter operators. These chips use the advanced Netronome IP blocks and apply efficient data

movement techniques with relaxed coherence to improve the power-performance of a

programmable architecture for data-intensive applications. The key components in the NFP

architecture include a scalable distributed switch fabric, processing memory, accelerators

and flow-processing cores implemented as Design Blocks and grouped into functional

Logic Blocks. NFPs use a run-to-completion programming model that supports a variety of

programming methodologies. Several generations of NFPs, with throughput ranging from

10Gb/s to 200Gb/s, have been designed and field-hardened across multiple fabrication pro-

cesses and are in production.

